Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.

Identifieur interne : 000186 ( Main/Exploration ); précédent : 000185; suivant : 000187

Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.

Auteurs : Sergio M. Latorre [Allemagne] ; C Sarai Reyes-Avila [Royaume-Uni, Danemark] ; Angus Malmgren [Royaume-Uni] ; Joe Win [Royaume-Uni] ; Sophien Kamoun [Royaume-Uni] ; Hernán A. Burbano [Allemagne, Royaume-Uni]

Source :

RBID : pubmed:32677941

Abstract

BACKGROUND

Understanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae-the causal agent of blast disease of cereals- is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat, and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined the two largest genomic datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries.

RESULTS

The global population of the rice blast fungus consists mainly of three well-defined genetic groups and a diverse set of individuals. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in Southeast Asia followed by three independent clonal expansions that took place over the last ~ 200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence and absence of candidate effector genes. These genes encode secreted proteins that modulate plant defense and allow pathogen colonization. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of presence and absence of effector genes define each of the pandemic clonal lineages.

CONCLUSIONS

Our analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence and absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.


DOI: 10.1186/s12915-020-00818-z
PubMed: 32677941
PubMed Central: PMC7364606


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.</title>
<author>
<name sortKey="Latorre, Sergio M" sort="Latorre, Sergio M" uniqKey="Latorre S" first="Sergio M" last="Latorre">Sergio M. Latorre</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reyes Avila, C Sarai" sort="Reyes Avila, C Sarai" uniqKey="Reyes Avila C" first="C Sarai" last="Reyes-Avila">C Sarai Reyes-Avila</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Natural History Museum of Denmark, University of Copenhagen, Copenhagen</wicri:regionArea>
<placeName>
<settlement type="city">Copenhague</settlement>
<region type="région" nuts="2">Hovedstaden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Malmgren, Angus" sort="Malmgren, Angus" uniqKey="Malmgren A" first="Angus" last="Malmgren">Angus Malmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK. sophien.kamoun@tsl.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany. hernan.burbano@tuebingen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. hernan.burbano@tuebingen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
<orgName type="university">University College de Londres</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32677941</idno>
<idno type="pmid">32677941</idno>
<idno type="doi">10.1186/s12915-020-00818-z</idno>
<idno type="pmc">PMC7364606</idno>
<idno type="wicri:Area/Main/Corpus">000185</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000185</idno>
<idno type="wicri:Area/Main/Curation">000185</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000185</idno>
<idno type="wicri:Area/Main/Exploration">000185</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.</title>
<author>
<name sortKey="Latorre, Sergio M" sort="Latorre, Sergio M" uniqKey="Latorre S" first="Sergio M" last="Latorre">Sergio M. Latorre</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reyes Avila, C Sarai" sort="Reyes Avila, C Sarai" uniqKey="Reyes Avila C" first="C Sarai" last="Reyes-Avila">C Sarai Reyes-Avila</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Natural History Museum of Denmark, University of Copenhagen, Copenhagen</wicri:regionArea>
<placeName>
<settlement type="city">Copenhague</settlement>
<region type="région" nuts="2">Hovedstaden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Malmgren, Angus" sort="Malmgren, Angus" uniqKey="Malmgren A" first="Angus" last="Malmgren">Angus Malmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK. sophien.kamoun@tsl.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany. hernan.burbano@tuebingen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. hernan.burbano@tuebingen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
<orgName type="university">University College de Londres</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC biology</title>
<idno type="eISSN">1741-7007</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Understanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae-the causal agent of blast disease of cereals- is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat, and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined the two largest genomic datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The global population of the rice blast fungus consists mainly of three well-defined genetic groups and a diverse set of individuals. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in Southeast Asia followed by three independent clonal expansions that took place over the last ~ 200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence and absence of candidate effector genes. These genes encode secreted proteins that modulate plant defense and allow pathogen colonization. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of presence and absence of effector genes define each of the pandemic clonal lineages.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence and absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32677941</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1741-7007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>BMC biology</Title>
<ISOAbbreviation>BMC Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.</ArticleTitle>
<Pagination>
<MedlinePgn>88</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12915-020-00818-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Understanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae-the causal agent of blast disease of cereals- is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat, and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined the two largest genomic datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries.</AbstractText>
<AbstractText Label="RESULTS">The global population of the rice blast fungus consists mainly of three well-defined genetic groups and a diverse set of individuals. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in Southeast Asia followed by three independent clonal expansions that took place over the last ~ 200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence and absence of candidate effector genes. These genes encode secreted proteins that modulate plant defense and allow pathogen colonization. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of presence and absence of effector genes define each of the pandemic clonal lineages.</AbstractText>
<AbstractText Label="CONCLUSIONS">Our analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence and absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Latorre</LastName>
<ForeName>Sergio M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reyes-Avila</LastName>
<ForeName>C Sarai</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malmgren</LastName>
<ForeName>Angus</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Win</LastName>
<ForeName>Joe</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK. sophien.kamoun@tsl.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burbano</LastName>
<ForeName>Hernán A</ForeName>
<Initials>HA</Initials>
<Identifier Source="ORCID">0000-0003-3433-719X</Identifier>
<AffiliationInfo>
<Affiliation>Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany. hernan.burbano@tuebingen.mpg.de.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. hernan.burbano@tuebingen.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GCF</GrantID>
<Agency>Gatsby Charitable Foundation</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>743165</GrantID>
<Agency>H2020 European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biol</MedlineTA>
<NlmUniqueID>101190720</NlmUniqueID>
<ISSNLinking>1741-7007</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cereals</Keyword>
<Keyword MajorTopicYN="Y">Effectors</Keyword>
<Keyword MajorTopicYN="Y">Fungi</Keyword>
<Keyword MajorTopicYN="Y">Genomes</Keyword>
<Keyword MajorTopicYN="Y">Infectious diseases</Keyword>
<Keyword MajorTopicYN="Y">Pandemics</Keyword>
<Keyword MajorTopicYN="Y">Pathogens</Keyword>
<Keyword MajorTopicYN="Y">Plants</Keyword>
<Keyword MajorTopicYN="Y">Population history</Keyword>
<Keyword MajorTopicYN="Y">Rice</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32677941</ArticleId>
<ArticleId IdType="doi">10.1186/s12915-020-00818-z</ArticleId>
<ArticleId IdType="pii">10.1186/s12915-020-00818-z</ArticleId>
<ArticleId IdType="pmc">PMC7364606</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Sep 24;461(7263):489-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20707855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1440-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24320224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Dec 1;30(23):3317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25104814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Aug;28(8):2239-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(8):R164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 Jan;61(1):138-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Lett. 2019 May 01;3(3):299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31171985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">291943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Feb 12;14(2):e1007155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29432421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Feb 25;16:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jul 7;357(6346):80-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28684523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Apr 11;484(7393):186-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22498624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(8):e1002869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Jul 10;7(8):2173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26163675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):254-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Sep;5(9):e1000583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19774068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):537-539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27735071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Oct 09;7(10):2896-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26454013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2019 Feb;35(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30828274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Aug 06;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 18;17:370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27194050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2016 Oct 3;14(1):84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2020 Jun 22;:MPMI03200052A</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32460610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2015 Jun 7;374:35-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25791286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 10;10(4):e1003537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24722319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2014 Apr 11;15:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Feb 27;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29487238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1573-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1985 Sep;111(1):147-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4029609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Nov;192(3):1065-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2012;4(1):13-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22117086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Oct;17(10):589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11585665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 Aug;12(8):1867-1878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29568114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Biol. 2019 Feb 4;2:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30729187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Nov 6;10(11):1465-1468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28838703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 Jan;74:62-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25459533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2010 Oct 15;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Aug;29(8):1917-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22422763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Jun 28;364(6447):1237-1239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31249049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 7;328(5979):710-722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2019 Mar;3(3):430-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30718852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Mar;21(6):1330-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22313491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 2;505(7481):87-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005 Mar 10;6:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 May;22(5):1185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):910-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Nov;38(6):1358-1370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2019 Aug;21(8):2677-2695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30838748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 21;302(5649):1401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2019 Sep 12;15(9):e1008272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31513573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Jan;31(1):34-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29144205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Apr 3;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29615506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 3;525(7567):104-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26196601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2019 Aug 13;17(1):65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31405370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Danemark</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Bade-Wurtemberg</li>
<li>District de Tübingen</li>
<li>Grand Londres</li>
<li>Hovedstaden</li>
</region>
<settlement>
<li>Copenhague</li>
<li>Londres</li>
<li>Tübingen</li>
</settlement>
<orgName>
<li>University College de Londres</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Latorre, Sergio M" sort="Latorre, Sergio M" uniqKey="Latorre S" first="Sergio M" last="Latorre">Sergio M. Latorre</name>
</region>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Reyes Avila, C Sarai" sort="Reyes Avila, C Sarai" uniqKey="Reyes Avila C" first="C Sarai" last="Reyes-Avila">C Sarai Reyes-Avila</name>
</noRegion>
<name sortKey="Burbano, Hernan A" sort="Burbano, Hernan A" uniqKey="Burbano H" first="Hernán A" last="Burbano">Hernán A. Burbano</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<name sortKey="Malmgren, Angus" sort="Malmgren, Angus" uniqKey="Malmgren A" first="Angus" last="Malmgren">Angus Malmgren</name>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</country>
<country name="Danemark">
<region name="Hovedstaden">
<name sortKey="Reyes Avila, C Sarai" sort="Reyes Avila, C Sarai" uniqKey="Reyes Avila C" first="C Sarai" last="Reyes-Avila">C Sarai Reyes-Avila</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32677941
   |texte=   Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32677941" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020